Theory of Strongly Charged Polymers in Bulk and on Surfaces

Ben O'Shaughnessy, Columbia University, DMR-9816374

Osmotic Pressure

- Classic example: *DNA solutions*
- Individual rods: *Manning condensation* (Manning, 1969) fraction of counterions condense onto rod if sufficiently charged
- Our research: many rods. What fraction of Manning condensate is released?
- Applications: DNA hybridization, ligand binding, polymerase chain reaction, etc.

- Our theory predicts osmotic pressure dependence on polymer and salt concentrations
- *Evaporation* of condensate determines osmotic pressure
- Agrees well with experiments when local structural effects included

Theory of Strongly Charged Polymers in Bulk and on Surfaces

Ben O'Shaughnessy, Columbia University, DMR-9816374

Strongly charged polymers on surfaces

- Example of enormous biotechnological importance: DNA microarrays
- Layer structure determines biosensor properties
- Other applications: *Colloidal* suspensions, surface modification, lubrication.

Trained researcher:
Qingbo Yang (graduate student)

- Our research: complete *phase* diagram of layer structures
- *Strongly charged* polymers can become non-linearly stretched
- Phase diagram qualitatively different to weakly charged case